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The thermal boundary layer on the wall of a side-heated cavity a t  early time is 
known to exhibit a complex travelling wave during growth to steady state and a 
similar feature is observed on isolated heated semi-infinite plates. Direct numerical 
solutions of the Navier-Stokes equations together with a linearized stability analysis 
are used to study the character of the flow at early time in detail. It is demonstrated 
that the cavity flow is essentially identical to the plate flow, and that for early time 
the flow is one-dimensional. Using the stability results it has been possible to 
accurately describe the form of the observed instability, as well as to reconcile a 
previously unexplained discrepancy in the speed of development of the flow. 

1. Introduction 
Natural convection in rectangular cavities with unequally heated sidewalls is a 

problem of fundamental interest to fluid mechanics and heat transfer, with many 
geophysical and industrial applications. In  many cases the application of the side 
heating is unsteady in some sense, and the transient response of the system is 
important. 

A specific problem which has been of considerable recent interest is that of an 
isothermal (at temperature T,), stationary fluid in a square cavity. At time 2 = 0 the 
opposing vertical walls are instantaneously heated and cooled to T, *:AT. Briefly, 
the flow that evolves consists of narrow boundary layers on the vertical walls exiting 
from the downstream corners in heated and cooled intrusions. These intrusions fill 
the cavity, resulting in a nearly linear stratification in the core a t  steady state. A full 
description of the flow evolution to steady state is given in Patterson & Armfield 
( 1990), following earlier papers based on experimental, numerical and scaling results 
by Patterson & Imberger (1980), Ivey (1984), Schladow, Patterson & Street (1989), 
and Schladow (1990). 

In particular, during the transient phase of the flow two periods of instability are 
observed on the walls, one occurring at start up and the other when the wall 
boundary layer is first struck by the intrusion travelling across the cavity from the 
far side. This behaviour was first reported by Armfield (1989), Patterson (1989), and 
later in more detail by Schladow (1990) and Armfield & Patterson (1991). The 
instability takes the form of waves travelling in the flow direction, that is up the hot 
wall and down the cold wall, and has been likened in the papers cited above to similar 
waves observed on an isolated, instantaneously heated or cooled, semi-infinite 
vertical plate. Waves of a similar type have also been observed in air (Prandtl 
number = 0.71), by Paolucci (1990). In  Schladow (1990) and Armfield & Patterson 
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FIQURE 1 .  Offset vertical profiles of the temperature (r  = 8.3 x at a range of times, with 
the earliest time profile at the left. 

(1991) it was suggested that at early times the development of the thermal boundary 
layers on the cavity walls was identical to that of the thermal boundary layer on such 
a plate. The present paper will focus on the stage during the development of the 
cavity flow when the thermal boundary layers on the walls are identical to those of 
the plate flow. 

For simplicity, since the Boussinesq approximation is used and therefore the 
cavity flow is centro-symmetric, only the hot wall will be discussed. Physically the 
flow will not be centro-symmetric, owing to the nonlinear behaviour of density and 
viscosity with temperature, which is eliminated when the Boussinesq approximation 
is used. Comparison with experimental results indicates that the error associated 
with the assumption of centro-symmetry, for the Rayleigh numbers considered, is 
small. In the following, the origin of the coordinate system is at the base of the hot 
wall with the horizontal coordinate x positive in the interior of the cavity. The 
vertical coordinate y coincides with the cavity wall. The flow will be compared to 
that on a semi-infinite vertical plate with base located a t  the origin. 

Previous studies of the development of the instantaneously heated plate flow give 
a general indication of its development as follows (for example, Goldstein & Briggs 
1964; Brown & Riley 1973; Joshi & Gebhart 1987). Immediately following the start 
of heating, the y-dependence of the flow is contained in a singularity at the leading 
edge of the plate. The singularity is frequently referred to as the leading-edge point 
or leading-edge signal. Away from the leading edge the solution is entirely one- 
dimensional, with variation in the x-direction only. An analytic form for this one- 
dimensional solution is available. Subsequently, the singularity is advected up the 
plate with fluid that has been entrained a t  the leading edge. This introduces a y- 
variation into the flow and results in a divergence from the one-dimensional solution 
and the beginning of transition to steady state. If the temperature a t  a point has 
grown to be greater than the steady-state value by the time the leading-edge signal 
arrives, then the solution relaxes to  the steady-state value from above, and a 
temperature overshoot is observed. Ingham (1985) considered the case of an 
impulsively heated plate in which the temperature on the plate varied as the power 
of the distance from the leading edge. Ingham’s results indicated that when the 
power governing the variation was allowed to approach zero, that is the temperature 
on the plate approached a constant value, an oscillatory approach to steady state 
was observed; however, this was not identified as a travelling wave. It was also 
suggested that a discontinuous transition to the steady state could occur for the 
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FIQURE 2. Vertical profiles of temperature from figure 1 overlaid to show the passage of the 
divergence point. 

constant-temperature plate. Unfortunately Ingham was unable to obtain solutions 
for the constant-temperature plate and so these hypotheses could not be tested and 
it is possible that the appearance of a discontinuous transition could have resulted 
from the lack of diffusion in the boundary-layer equations used in the analysis. 

This early part of the flow development may be readily seen in figures 1 and 2. In  
figure 1 vertical profiles of the temperature are presented at  x = 8.3 x of the 
cavity width in from the hot wall, at a range of times, with the greater time profiles 
offset to the right. It is seen in figure 1 that each of the three earliest time profiles 
consists of a region, near to y = 0, which varies with y, and a region far from y = 0 
which is independent of y. These two regions are marked on the figure as y-dependent 
and y-independent for the first profile. In figure 2 the three earliest time profiles are 
shown with the y-independent regions overlaid on top of each other and on the zero- 
time solution, which is a vertical line. The rapid y-variation at the top of the profiles 
is due to the effect of the cavity ceiling and is not considered in the present discussion. 
The point separating the y-dependent and y-independent regions is marked on the 
figures as the divergence point and is seen to travel upward for the first three profiles 
of figure 1. By the time of the fourth profile the divergence point has reached the top 
of the cavity and the entire profile is y-dependent. The passage of the divergence 
point and the separation of the profiles into y-dependent and y-independent regimes 
is also clearly seen in figure 2. It is suggested that the divergence point marked on 
these figures and discussed in the present paper corresponds to the earliest arrival of 
information from the leading edge and thus is a graphical representation of the 
leading-edge signal hypothesized in the papers cited above. 

After the passage of the divergence point, and the overshoot if it occurs, a series 
of waves is observed to travel up the hot wall, for sufficiently high Rayleigh numbers, 
where the Rayleigh number Ra is defined below. In general the overshoot and the 
travelling waves have been grouped together and referred to as a sinusoidal 
oscillation (Schladow 1990). The travelling waves increase in amplitude in the 
positive y-direction while the amplitude of the overshoot varies only slightly. When 
observed at a fixed y-location the signal is observed to decay and the effect is thus 
transitory. For higher Rayleigh numbers this decay does not occur (Joshi & Gebhart 
1987). Indeed Joshi & Gebhart suggest that at  sufficiently high Ra values the 
travelling waves are associated with a transition to  turbulence. 

As the divergence point, the overshoot and the travelling waves are passing up the 
plate, the base flow is itself evolving. Thus the character of the flow near to y = 0 will 
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be different to that far from y = 0, a t  the time of the passage of the effects described 
above. The boundary layer near to y = 0 at the time of passage will be narrower with 
a smaller maximum velocity than that for larger y values. The flow for small y will 
be stable while that further away will be unstable, indicating that at  some critical 
height there will be a transition from stable to unstable regimes. A Rayleigh number 
based on this height is termed the critical Rayleigh number. In $4 it is shown that 
the critical Rayleigh number obtained for the evolving flow corresponds well to that 
obtained for the fully developed flow. The similarity of the critical Rayleigh numbers 
for the evolving and the fully developed flow indicates that at the time the leading- 
edge point passes a y-location the flow at that location has a stability character 
approximately the same as the fully developed flow has at  that location. 

Stability analysis of fully developed boundary layers on heated vertical plates 
indicates that, at Rayleigh numbers below that a t  which transition to turbulence 
occurs but above the critical value, the boundary layer will act to selectively amplify 
a small band of wavenumbers (Gebhart & Mahajan 1982). For this range ofRa values 
the boundary layer is therefore acting as a bandpass filter. This is consistent with the 
observation of travelling waves in the boundary layer of the cavity flow (Schladow 
1990; Armfield & Patterson 1991). Gill & Davey (1969), in a stability analysis of flow 
between infinite differentially heated vertical plates, suggested that travelling wave 
modes could exist with a velocity, with respect to the fixed coordinate system defined 
above, greater than the maximum flow velocity. 

In  the present paper we utilize the results of a direct simulation of the cavity flow, 
as described in $2, in a stability analysis to study in detail the early phase of the 
cavity boundary layer. For validation, the numerical solution is briefly compared 
with experimental results. Further, numerical solutions for the semi-infinite plate 
flow have been generated and are used to verify the assumption that the cavity-flow 
thermal boundary layer is, a t  early time, well approximated by the plate flow. 
Comparison is also made between the plate flow, the cavity flow and the one- 
dimensional analytic solution of the boundary-layer equations to confirm that the 
early part of the flow in both cases is indeed one-dimensional. 

Using these results it has been possible to identify the cause of a previously 
unexplained discrepancy between the maximum flow velocity and the velocity of the 
divergence point dividing the flow into y-independent and y-dependent regimes. It 
has also been possible to verify the prediction of Gill & Davey (1969) that waves 
travelling a t  greater than the maximum flow velocity may be present. Further, 
analysis of the numerical results allows a clear delineation between the temperature 
overshoot and the subsequent travelling waves. 

The remainder of the paper is as follows. Section 2 briefly describes the numerical 
method used to obtain the full solution of the Navier-Stokes equations for the cavity 
and the plate flow. Additionally, in $2 the method used in the stability analysis 
together with the one-dimensional solution of the boundary-layer equations is given. 
The results of the stability analysis are presented in $3 for Prandtl numbers (defined 
below) Pr = 7.5, 13 and 18, all a t  a Rayleigh of approximately 6 x lo8. These Prandtl 
numbers were chosen to match the available experimental results (Jeeveraj & 
Patterson 1992). Section 4 contains the discussion while the conclusion are given 
in $5. 
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2. Method 
2.1. Numerical method 

The governing equations for both the cavity and the plate flow are the usual 
Navier-Stokes and the conservation of heat equations. The Boussinesq assumption 
allows the incompressible form of the equations to be used which are then written in 
conservative, non-dimensional form as 

u,+ v, = 0, (3) 

where subscripts denote partial differentiation, U is the velocity component in the x- 
direction, V the velocity component in the y-direction, T the temperature and T, the 
mean temperature. The Rayleigh number and Prandtl number are defined as, 

Ra = gPH3(AT)/v~,  Pr = v / K ,  

where g is the acceleration due to gravity, /? the coefficient of thermal expansion, H 
the height of the cavity, v the kinematic viscosity and K the thermal diffusivity. In  
the above equations, and in all results presented, length is non-dimensionalized by 
H ,  T-T,  by AT, the total temperature variation, and time by H2/v. 

For the cavity flow the top and bottom are insulated and all boundaries are non- 
slip. Initially the fluid is at rest and isothermal (T = T,) and at  t = 0 the sidewalls 
are heated and cooled impulsively to T, &$AT. The semi-infinite plate is modelled by 
a long plate of length H ,  in initially isothermal and stationary fluid. A t  t = 0, the 
plate, is impulsively heated to T,+;AT. In both cases a mesh that concentrates 
points in the region of the wall is required to resolve the boundary-layer lengthscales. 
For the cavity, the mesh used locates a point one thousandth of the cavity width in 
from the wall, expands at  a rate of 10 % until the edge of the thermal boundary layer 
is reached, and is then held constant until the far boundary layer is reached. The 
resultant mesh is shown in figure 3. The same computational domain and mesh are 
used for the plate flow, with the hot wall of the cavity corresponding to the plate, and 
the boundaries corresponding to the lid and the cold wall of the cavity, having zero 
normal gradient in velocity and temperature. The boundary corresponding to the 
floor also has zero normal gradient in the velocity while the temperature there is set 
directly to zero. The time step used is sufficiently short to resolve the shortest 
timescales of the boundary-layer start-up. 

The cases dealt with here correspond t o  the simulations undertaken in Patterson 
& Armfield (1990) and Armfield & Patterson (1991). Thus the cavity modelled is 
24 cm square, and the resulting mesh is 80x80. The required time step is - 1.0 x 

Full details of the numerical scheme are given in the papers referred to above and 
in Armfield (1991). Briefly, the equations are discretized on a non-staggered mesh, 
but using a method of obtaining the pressure field and satisfying continuity similar 

for the values of Ra used. 
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FIGURE 3. Mesh used for computation with bottom-left corner enlarged. 

to the usual SIMPLE scheme on a staggered mesh (Armfield 1991). The convective 
terms are differenced by a third-order upwind scheme, and time integration is carried 
out by a Crank-Nicolson predictor-corrector method. 

I n  both the plate and cavity flows the velocity and temperature fields in the 
boundary layer are of interest and, as will be shown below, these are essentially one- 
dimensional for times prior to the passage of the first group of travelling waves. 

2.2. Stability analysis 

The stability of the flow in the boundary layer is determined by the usual linear 
stability analysis of the one-dimensional numerical solution of the Navier-Stokes 
equations, and the one-dimensional analytical solution given by Goldstein & Briggs 
(1964). The Goldstein & Briggs solution of the boundary-layer equations on the 
impulsively heated plate is 

T = +rfc 7,  (6) 

with 7 = x/ (4~t ) f  and inerfc the nth integral of the complementary error function. 
The horizontal velocity is zero, and as can be seen there is no y-dependence in T or 
V.  

To examine the stability of this flow, an infinitesimal perturbation is added to each 
of the components, and the perturbed fields put into the Navier-Stokes equations. 
The resulting equations are linearized in the usual way to provide a set of eigenvalue 
equations for the perturbations. Thus, if the perturbations to the stream function 
and temperature are described by $ and 7 respectively, where 

and Re (f) denotes the real part off, a is real and c is complex, then substitution into 
the appropriate form of the Navier-Stokes equations yields, on ignoring products of 
the perturbations, the stability equations (Gill & Davey 1969) 

@" - 2a2$" + a'$- ia[( V -  c) ($7'- or2$) - V$] + T'Ra/Pr = 0, 

7"-a27- iaPr[( V - c )  7 -  T$] = 0. 
(9) 

(10) 
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with boundary conditions 

~ ( 0 )  = $ ( O )  = y(0) = 0 for x = 0, 

7(x),$(x),$’(x)+O as x-+oo. 

For both the numerical and analytic solutions, the large-x boundary condition is 
applied a t  half the cavity width, x = 0.5. The validity of applying the large-x 
boundary condition at x = 0.5 was tested by applying the boundary condition for the 
analytic solution a t  locations up to x = 5.0, with no discernible difference in the 
results being observed. 

Equations (9) and (10) are eigenvalue equations for a and c. The equations are 
discretized using a second-order shooting method and then integrated using the 
orthonormalization technique of Davey ( 1973). Calculation of the eigenvalues is then 
reduced to obtaining the values of R a ,  Pr ,  a and c for which the determinant of a 3 x 3 
matrix is zero. A simplex minimization procedure is used to search for these zeros. 
For a given wavenumber a,  the amplification is ac,, where ci is the imaginary 
component o f  c ,  while cr, the real component of c, is the wave velocity. Thus 
calculation of the eigenvalues yields, for a given Ru-Pr pair, a relationship between 
the wavenumber, the wave speed and the amplification. 

3. Results 
Full numerical solutions of the cavity and plate problems have been obtained for 

the Ra-Pr pairs: (i) Ra = 6 x lo8, Pr  = 7.5; (ii) Ra = 5.4 x lo8, Pr = 13; (iii) 
Ra = 6.2 x 108, P r  = 18. These have been compared with the one-dimensional 
analytical solution given in (5) and (6), and with the experimental results given in 
Jeeveraj & Patterson (1991). 

The result of these comparisons for case (i), in the form of temperature time series 
taken in the boundary layer a t  mid-height ( y  = 0.5, x = 1.25 x is shown in figure 
4. Several features are apparent: first, for t < 3.5 x the two numerical results 
coincide with the one-dimensional analytical solution ; second, following the 
separation of the signals, the numerical solutions reach a peak value, and 
subsequently undergo a decaying oscillation ; third, the plate and cavity solutions are 
virtually identical until the oscillations begin, and then differ only slightly in the 
amplitude of the oscillations and in the steady state ; fourth, the initial experimental 
response appears to lag the numerical result by approximately 1.0 x while the 
subsequent oscillatory behaviour, although approximately in phase with the 
numerical result, has a somewhat smaller amplitude and longer period. 

The timing difference between the experimental and numerical results for the 
cavity flow has been discussed in Patterson & Armfield (1990) and Armfield & 
Patterson (1991), and is most likely the result of the experiment being at  a lower R a  
than expected. A comparison of the experimental result and a numerical result 
obtained at a Rayleigh number of 4.8 x 108, 80% of that given above, is shown in 
figure 5.  The arrival time and phase of the oscillation are now well represented, 
supporting the hypothesis that the experimental Rayleigh number is lower than 
expected. These comparisons, together with the extended comparisons in Patterson 
& Armfield (1990), confirm that the numerical method is accurately modelling the 
physics of the cavity flow. The lower than expected experimental Rayleigh number 
is most likely the result of boundary layers forming, despite vigorous stirring, in the 
water baths used to heat and cool the cavity sidewalls. 
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FIGURE 4. Temperature time series for case (i) Ra = 6 x los, Pr = 7.5, at x = 1.25 x lo-*, y = 0.5 for 
the numerical cavity flow (solid line), the numerical plate flow (long dashed line), the experimenta.1 
cavity flow (short dashed line) and the analytic one-dimensional solution (dotted line). 

0.16 r 

t~ 103 

FIGURE 5. Temperature time series at x = 1.25 x lo-*, y = 0.5 for the numerical cavity flow 
(solid line) at  Ra = 4.8 x lo8 and the experimental cavity flow (dashed line). 

The similarity between the plate and cavity results for the times shown confirms 
that the plate flow is good model for the cavity boundary-layer flow, at least for the 
initial part of the development. This means that the conclusions in the literature 
pertaining to the waves travelling on the boundary layer of the plate are also 
relevant to the cavity, and vice versa. Finally, the coincidence of the one- 
dimensional solution with the full numerical solution for the early part of the flow 
indicates that, for the early period of the flow development, the one-dimensional 
assumption is valid. 

Figure 6 shows a comparison of the numerically calculated velocity and 
temperature profiles for the plate and cavity flow with the corresponding one- 
dimensional analytical solutions, at y = 0.5 and t = 2.8 x Clearly, the agreement 
within the region of interest is excellent. In the interior, however, the cavity flow has 
a velocity reversal, which is not present in the plate flow or the one-dimensional 
solution. These comparisons were made at  other vertical and horizontal positions 
(excluding the upper end of the cavity) with, for all cases, the same conclusions. For 
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FIQURE 6. Temperature and velocity profiles at y = 0.05 and t = 2.8 x for the numerical cavity 
flow (solid line), the numerical plate flow (dashed line) and the analytic one-dimensional solution 
(dotted line). 
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FIQURE 7. Temperature time series at x = 8.3 x and the seven y-locations shown on the figure 
for the numerical cavity flow. The vertical dashed lines mark the arrival time of the maximum flow 
velocity point at each y-location. 

conciseness these are not shown. The occurrence of the velocity reversal in the cavity 
only is due to at least some of the fluid ejected into the intrusion falling back down 
into the cavity and being re-entrained. This feature is associated with the cavity 
ceiling and thus is not expected in the semi-infinite plate flow. 

Figure 7 shows the temperature time series from the numerical solution of the 
cavity flow, for case (i), at x = 8.3 x and at a number of different y-locations. 
Figure 8 shows the y = 0.75 result, with the overshoot and the travelling waves 
marked. Using the results presented in figure 7 it is possible to examine some aspects 
of the nature of the oscillation formed by the combination of the overshoot and the 
travelling waves, which have been briefly described in the introduction. From figure 
7 it is evident that the amplitude of the overshoot varies only slightly with increasing 
y, while the period increases considerably, more than doubling over the range shown. 
Conversely the amplitude of the travelling waves increase significantly over the 
range shown, while there is negligible variation in the period. The overshoot and the 
travelling waves are therefore distinct features. 

The time at which the curve for a given y-location diverges from that for a larger 
y corresponds to the arrival of the divergence point and subsequent divergence from 
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FIQURE 8. Temperature time series at 2 = 8.3 x and y = 0.75 for the numerical cavity flow 
with the temperature overshoot and the travelling waves marked. 
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FIQURE 9. Wavenumber a versus wave speed c, obtained a t  t = 4.7 x using the one- 
dimensional base flow (dashed line) and at  t = 1.8 x 2.3 x 4.0 x and 4.7 x using 
the numerical cavity base flow (solid lines). Maximum flow velocities are marked on the plot as 
V,, 6, V, and V,, corresponding to the solution a t  1.8 x 
respectively. 

2.3 x 4.0 x and 4.7 x 

the simple one-dimensional solution. From figure 7, this point of divergence has a 
velocity of 2.2 x 103 as it  passes the mid-height location y = 0.5. Similarly, the 
velocities of the travelling waves may be calculated from the figure ; for the first wave 
(the second peak in the curve), the velocity a t  mid-height is 1.4 x lo3, while that of 
the second wave, although difficult to determine exactly, is approximately the same. 
The overshoot (the first peak in the curve) has a velocity between that of the 
divergence and the first wave. The period of the travelling waves is 2.1 x while 
the amplification factor at the y = 0.5 location is 4.4 x 103. 

The arrival time of a fluid parcel which has travelled from the leading edge a t  the 
maximum flow velocity, obtained by integrating the numerically calculated vertical 
velocity, is also marked on the plot. This is consistently later than the divergence 
time. Correspondingly, the resulting maximum flow velocity a t  mid-height is 
1.2 x lo3, substantially slower than the divergence point velocity of 2.2 x 109. 

These results indicate that there are three characteristic velocities associated with 
the development of the boundary layer. I n  order of increasing magnitude they are : 
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FIQURE 10. Amplification ac, versus wave speed c, obtained at  t = 4.7 x using the one- 
dimensional base flow (dashed line) and at t = 1.8 x 2.3 x 4.0 x and 4.7 x using the 
numerical cavity baae flow (solid lines). Maximum flow velocities are marked on the plot as V,, 
V,, V, and V, corresponding to the solution at 1 . 8 ~  
respectively. 
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FIQURE 11. Amplification ac, versus wavenumber a obtained at t = 4.7 x using the one- 
dimensional base flow (dashed line) and at t = 1.8 x 2.3 x 4.0 x and 4.7 x using 
the numerical cavity base flow (solid lines). 

the maximum flow velocity, the travelling wave velocity and the divergence point 
velocity. These velocities will subsequently be denoted as urn, vw, and vud, respectively. 

3.1. Stability analysis results 
The linearized stability analysis allows the character of the travelling waves in the 
boundary layer to be studied in more detail. The solution of the stability equations 
for any Ra-Pr pair using the numerically calculated or analytical vertical velocity 
and temperature profiles yields eigenvalues of a ,  c,, and ci, for which a solution exists. 
Figure 9 shows the resulting wavenumber a ,  for case (i), plotted against the wave 
speed c, a t  four times for the numerically calculated solution, and at a single time for 
the one-dimensional analytical solution. Figure 10 shows the amplification ac, 
plotted against the wave speed and figure 11 shows the amplification as a function 
of wavenumber. The time chosen for the comparison of the analytical and numerical 
results ( t  = 4.7 x coincides with the passage of the divergence point at the mid- 
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height location. I n  all figures, the analytical and numerical results are very similar, 
again confirming the one-dimensional nature of the numerical result. I n  figures 9 and 
10, the maximum flow velocities a t  each time are also shown as vertical lines. The 
results a t  t = 4 x lop4 and 4.7 x are presented to demonstrate that a small 
variation in the base flow leads to a small variation in the stability results, and thus 
the stability analysis itself is stable. This is important in the context of the present 
flow because the base flow is evolving as the travelling waves are passing up the wall. 

Subsequent discussion will consider the stability results obtained using the 
numerical base flow solution, although the analytic base flow solution could have 
been obtained and used at the other times and would have yielded similar estimates 
for the stability characteristics. 

Consider first the t = 4.7 x result. From figure 11,  a range of wavenumbers is 
amplified by the flow. This range is marked on figure 9. Clearly, much of this range 
has a wave speed greater than the maximum flow velocity, consistent with the 
observation that the maximum flow velocity is the smallest of the three characteristic 
velocities. The peak amplification occurs for a wavenumber of 24 (figure 11). The 
corresponding wave velocity, from figure 9, is 1.2 x lo3, the corresponding period is 
2.1 x lo-' and the predicted amplification is 3.6 x lo3. These compare with the 
estimates from figure 7 of 1.4 x lo3, 2.1 x and 4.5 x lo3 for the travelling waves 
observed in the numerical results. Further, the peak signal velocity predicted by the 
stability analysis is 2.0 x lo3 ; this corresponds to  the velocity of the divergence from 
the one-dimensional flow, estimated from figure 7 as 2 . 2 ~  lo3. Clearly the 
characteristics of the peak amplification wavenumber component obtained from the 
stability analysis accurately represent the observed features of the travelling wave, 
obtained from the numerical results given in figure 7 .  

Also shown in figures 9-1 1 are the results of the stability analysis for earlier times. 
Of interest here is that, although the general form of the relationship between the 
three parameters is similar, the wave speed and amplification are significantly 
reduced a t  earlier times. I n  particular, at t = 1.8 x all wavenumbers are 
decaying in amplitude. Early time corresponds to the region of the thermal boundary 
layer close to the leading edge a t  the time of passage of the travelling wave 
disturbance; thus the figures show that in the first part of the flow the travelling 
waves are decaying in amplitude for all wavenumbers. At a particular time the 
amplification becomes positive at  a specific wavenumber, corresponding to a critical 
distance from the leading edge. As the disturbance travels further up the wall, the 
range of amplified wavenumbers increases. However, only those waves subject to  
sufficient amplification will be readily visible. Thus the observed travelling waves are 
those with near to peak amplification as has been shown above. 

The same analysis has also been performed for cases (ii) and (iii) above (Pr = 13 
and 18). I n  these cases, there are minor changes in Ra, and the primary change is in 
the value of Pr, as compared to the Ra-Pr values in case (i). These pairs were 
determined by the available experimental data (Jeevaraj & Patterson 1991). In both 
cases (ii) and (iii), the same procedures were followed and a good agreement between 
the analytic solution, the numerical cavity flow, the numerical plate flow and the 
experimental results was obtained. Similarly the vm, v, and vd obtained from the 
stability analysis accurately predicted those obtained directly from the numerical 
solution. I n  general, the results are consistent with those for case (i), and the details 
are not shown here. The wavenumber, wave speed, and amplification plots were of 
the same form as figures 9-11. 

These results are summarized in table 1, which shows the results for all cases. Both 
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Flow Method Urn v w  'd P ( d  
Stability 1.2 x 105 1.2 x 103 2.0 x 103 2.1 x 1 0 - 4  
Simulation 1.2 x los 1.4 x lo3 2.2 x 105 2.1 x Pr = 7.5 { 
Stability 6.4 x lo2 7.0 x lo2 1.1  x 105 3.0 x 
Simulation 6.4 x lo2 8.0 x lo2 1.1  x 105 3.2 x P r =  13 { 

pr = 18 {Stability 7.1 x lo2 7.5 x lo2 1.2 x 105 2.8 x 
Simulation 7.1 x lo2 7.2 x lo2 1.3 x l@ 3.4 x 

TABLE 1. Comparison of vm, v,, vd and p (the period) for the three flows 

the velocities and wavelengths obtained from the full simulations and from the 
stability analysis are included ; clearly the stability estimates match very well. 
Further, the ordering of the three characteristic velocities is the same for all three 
Prandtl numbers, with the wave velocity of order 10% greater than the maximum 
flow velocity, while the velocity of the divergence point is of order 70% greater. 

4. Discussion 
The results presented above indicate that the early part of the development of the 

thermal boundary layer on the wall in the side-heated cavity is a close approximation 
to the thermal boundary layer on an isolated heated semi-infinite plate, for Prandtl 
and Rayleigh numbers similar to those considered. This is because the local cavity 
flow, at  the y-locations shown, is not significantly influenced by the cavity lid or the 
far wall. At considerably lower Rayleigh numbers, or higher Prandtl numbers, the 
similarity between the two flows would no longer hold, as the boundary-layer scale 
is then proportional to the cavity scale and the flow is strongly influenced by the 
cavity lid and far wall within the time-scale of the boundary-layer development. For 
instance, using the scaling given by Patterson & Imberger (1990), the viscous 
boundary-layer thickness is obtained as S, - PrilRa; suggesting a minimum Rayleigh 
number at Pr = 7.5, for similarity between the cavity and plate flows, of Ra N 1000. 
Similarly, for later times than those considered here, the cavity flow will diverge 
considerably from the plate flow as the influence of the upper boundary and the 
intrusion from the far wall is felt. 

It is well known that the plate flow develops initially as a one-dimensional solution 
to the temperature and vertical momentum equations, the analytic form of which is 
given in equations ( 5 )  and (6). Because of this similarity the cavity boundary layer 
is also well approximated by the one-dimensional solution. Thus, as is expected, the 
stability analysis of the one-dimensional analytic solution yields a good approxi- 
mation to that of the numerical solution. 

The important features of the early development of the flow that have been 
considered are the passage of the divergence point separating the one-dimensional y- 
independent solution and the later y-dependent solution, the overshoot in the 
temperature solution and the subsequent travelling waves. Owing to the similarity of 
the cavity and plate flows it is evident that the conclusions here are, by implication, 
applicable to the plate flow. Likewise, it is evident that the conclusions obtained by 
others for the plate flow are applicable here. 

A detailed examination of the numerical simulation has indicated that the 
divergence point dividing the y-dependent and y-independent parts of the solution 
travels up the wall at  a velocity considerably greater than the maximum flow 
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velocity. It was initially hypothesized by Goldstein & Briggs (1964), and later by 
Brown & Riley (1973), that this divergence point would travel at the maximum flow 
velocity. More recent experimental and numerical studies (Joshi & Gebhart 1987 ; 
Schladow 1990) have also reported that the divergence point travels considerably 
faster than the maximum flow velocity. Joshi & Gebhart in particular noticed that 
for sufficiently high Rayleigh numbers the flow would uniformly and instantaneously 
diverge from the one-dimensional solution. This suggested that the divergence point 
had an infinite velocity and was most likely the result of the amplification of local 
disturbances. This is clearly not the case in the present flow in which the divergence 
point travels at a finite, measurable velocity up the wall. Schladow (1990) also 
observed this velocity discrepancy at a similar Ra values, but without further 
discussion. 

Previous stability studies have indicated that travelling waves may exist with a 
velocity greater than the maximum flow velocity (Gill & Davey 1969). However, 
such studies were primarily concerned with obtaining constant amplification curves 
in wavenumber/Grashof number space. Thus, although the existence of disturbance 
velocities greater than the maximum flow velocity was predicted by the stability 
analysis, the link to experimental or numerical data, or to the passage of the 
divergence point, was not made. 

The presentation of the stability results in the form of trajectories in 
wavenumber/wave speed, amplification/wave speed, and amplification/wave- 
number space in the present study clearly demonstrates the existence of a peak 
disturbance velocity considerably greater than the maximum flow velocity. 
Comparison of the peak disturbance predicted by the stability analysis with the 
divergence velocity measured from the results of the simulation, in table 1, shows 
very good agreement in all cases, and thus the discrepancy between the divergence- 
point velocity and the maximum flow velocity observed in the current study and by 
previous researchers is explained. 

Brown & Riley (1973) suggested that a singularity originating at the leading edge 
of the plate (referred to as the leading-edge point) travelled up the wall a t  the 
maximum flow velocity. They also suggested that it was the arrival of this point that 
triggered the divergence of the full solution from the purely one-dimensional 
solution. Thus the effect of their leading-edge point corresponds to that of the 
divergence point discussed in this paper ; however, it is clear from the above results 
that the divergence point travels faster than the maximum flow velocity and 
additionally does not possess a singular character. Brown & Riley used as the basis 
for the analysis the usual boundary-layer equations with no streamwise diffusion 
which, if present, would remove the singular nature of the leading-edge point. 
Further, even without the effect of diffusion, the dispersive nature of the flow 
demonstrated by the stability results would act to transform the singularity. 

As a result of the present analysis it is seen that the singularity generated at the 
leading edge y = 0, at t = 0 is the source of the observed travelling waves as well as 
of the divergence point. The singularity itself can be considered to consist of an 
infinite sum of discrete wavenumber components. Once the flow starts, each of the 
wavenumber components will start to travel up the wall a t  the velocity predicted by 
the dispersion relation in figure 9. The velocity of the fastest component will 
correspond to that of the divergence point. The slower travelling components of the 
singularity will follow the divergence point up the wall. A small band of wavenumbers 
will gain energy from the base flow once they pass a critical height at which initially 
a single wavenumber component transits to the unstable regime. As the waves 
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continue up the wall more energy passes into the component that was first to transit 
into the unstable regime, and ultimately this component becomes visible with a 
measurable amplification rate, giving rise to the observed travelling waves. Higher 
up the wall additional wavenumber components could be expected to become visible 
as they transit into an unstable regime and receive energy from the base flow. It is 
primarily thc peaked nature of the amplification curve, together with the fact that 
once a component transits to an unstable regime it remains unstable, that gives the 
flow its filtering effect where a single wavenumber is initially selectively amplified 
and thus becomes clearly visible. As the leading edge produces only one singularity, 
a t  start-up, and as the velocity of the high-wavenumber components asymptotes to 
a constant velocity of approximately the maximum flow velocity, the signal is 
transient. 

Goldstein & Briggs (1964) suggested that, in some cases, the temperature signal 
would overshoot its steady-state value in the initial development of the flow, and 
that the final relaxation t o  steady state would be from above rather than, as might 
be expected, from below. This hypothesis was based on a comparison of the rate of 
development of the one-dimensional thermal boundary layer and the maximum flow 
velocity, and included the assumption that the divergence point would travel at the 
maximum flow velocity. Thus, if the thermal boundary layer had grown to greater 
than its steady-state value by the time the divergence point had arrived, then an 
overshoot would be observed. 

The oscillating signal observed here, and experimentally by Patterson & Armfield 
(1990) and Jeeveraj & Patterson (1992), is more complex than a simple overshoot. 
The signal is a combination of the overshoot predicted by Goldstein & Briggs and the 
travelling waves predicted by the stability analysis and discussed above. Thus the 
later part of the signal is formed by travelling waves consisting of those wavenumbers 
with near peak amplification. However, as was observed in $3  the overshoot, the 
initial peak in the signal, has a different character to the remainder of the signal. It 
is clearly present in the trace at  y = 0.0625 and does not increase significantly in 
amplitude while increasing considerably in period with increasing y, the reverse of 
the travelling wave. This behaviour is not predicted by the stability analysis, 
indicating that the initial peak is not a travelling wave of the same form as the later 
peaks. 

Thus the early development of the flow, up to and including the passage of the 
travelling waves, is based on the three characteristic velocities: the maximum flow 
velocity, the velocity of the maximum amplified wavenumber and the velocity of the 
divergence point. This behaviour is reflected in the shape of the amplification/wave 
speed plot with, approximately, the maximum flow velocity correspondingly to the 
right angle, the travelling wave velocity corresponding to  the peak and the 
divergence velocity corresponding to  the leading angle. 

Using the early time stability results it is possible to obtain the location on the wall 
at which a single wavenumber component of the leading-edge singularity will first 
transit to an unstable regime. This may then be used to calculate approximately the 
critical Rayleigh number for which transition from stable to unstable flow occurs, for 
the Pr = 7.5 case, in the following way. Interpolation on figures 9 or 10 indicates 
that the flow passes through the neutral (zero amplification) surface at approximately 
1.9 x with the maximum amplification available changing sign at a single 
wavenumber. Using figure 7 this time corresponds to the full development of the 
boundary layer at location y - 0,166, at which point the local Rayleigh number 
based on the y-value, will be 2.7 x lo6. Gebhart & Mahajan (1982) present constant- 
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amplification surfaces for Pr = 6.7 in wavenumber/Grashof number space for fully 
developed flow on a heated vertical plate with constant flux boundary condition. 
Their results are presented in terms of a modified flux Grashof number G* and 
indicate that transition occurs a t  G* = 20. Using the relation Gr - (G*)4, where G.r 
is the Grashof number for the isothermal plate and Ra = GrPr, gives a predicted 
critical Rayleigh number of 1 x lo6, based on the total temperature variation in the 
boundary layer. In the present context, with the Rayleigh number based on the total 
temperature variation in the cavity, this equals 2 x lo6. Clearly both methods 
indicate transition occurring at approximately the same point. 

5. Conclusions 
A comparison of experimental, numerical and analytical results indicates that  the 

early part of the development of the cavity convection flow for a range of Prandtl 
numbers can be accurately simulated by the numerical scheme described in $2. 
Comparisons of the simulation with experimental data for later times have been 
presented in Patterson & Armfield (1990) and demonstrate that accurate prediction 
is also obtained for the full development of the cavity flow. Additionally it has been 
shown that the thermal boundary layer on the wall for the cavity flow is 
approximately one-dimensional and that, at least until after the passage of the 
travelling wave instability, the flow is essentially that of an isolated heated semi- 
infinite plate. It has also been demonstrated that a good estimate for the stability 
characteristics of the cavity flow can be obtained from the analytic one-dimensional 
solution. 

The discrepancy between the velocity of the divergence point and the maximum 
flow velocity is due to the existence of a peak disturbance velocity greater than the 
maximum flow velocity. Stability analysis predicts this discrepancy and accurately 
gives the divergence-point velocity. 

The oscillation following the divergence of the full solution from the one- 
dimensional is a combination of temperature overshoot and the travelling wave 
modes that amplify in the y-direction. The initial peak in the oscillation is the 
temperature overshoot that occurs in the manner predicted by Goldstein & Briggs 
(1964), followed by the travelling waves, with only those most strongly amplified, 
that is those with wavenumbers near the peak of the amplification plot, being visible. 
These travel slower than the divergence point and thus the wavelength of the 
overshoot increases in the direction of travel. 

The observed behaviour of the flow is thus explained by reference to the results of 
the stability analysis. In  particular the flow features are characterized by three 
velocities : the maximum flow velocity, the maximum amplified wavenumber 
velocity and the peak disturbance (divergence point) velocity. 
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